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FOREWORD 

The Software Engineering Laboratory (SEL) is an organization 
sponsored by the National Aeronautics and Space Administra- 
tion/Goddard Space Flight Center (NASA/GSFC) and created for 
the purpose of investigating the effectiveness of software 
engineering technologies when applied to the development of 
applications software. The SEL was created in 1977 and has 
three primary organizational members: 

NASA/GSFC (Systems Development and Analysis Branch) 
The University of Maryland (Computer Sciences Department) 
Computer Sciences Corporation (Flight Systems Operation) 

The goals of the SEL are (1) to understand the software de- 
velopment process in the GSFC environment: (2) to measure 
the effect of various methodologies, tools, and models on 
this process; and (3) to identify and then to apply success- 
ful development practices. The activities, findings, and 
recommendations of the SEL are recorded in the Software En- 
gineering Laboratory Series, a continuing series of reports 
that includes this document. A version of this document was 
also issued as Computer Sciences Corporation document 
CSC/TM-86/6053 / 
Single copies of this document can be obtained by writing to 

Frank E. McGarry 
Code 552 
NASA/GSFC 
Greenbelt, Maryland 20771 
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ABSTRACT 

An extensive series of studies of software design measures 
conducted by the Software Engineering Laboratory is 
described. Included are the objectives and results of the 
studies, the method used to perform the studies, and the 
problems encountered. The document should be useful to 
researchers planning similar studies as well as to managers 
and designers concerned with applying quantitative design 
measures. 
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SECTION 1 - INTRODUCTION 

This document describes an extensive series of studies of 
software design measures. It presents the study objectives 
and explains how the studies were conducted, what results 
were achieved, and where problems were encountered. The 
document should be useful to researchers planning similar 
studies as well as to managers and designers concerned with 
applying quantitative design measures. 

These studies were conducted by the Software Engineering 
Laboratory (SEL) (Reference 1) as part of a continuing pro- 
gram of software measurement (Reference 2) and technology 
evaluation (Reference 3). The overall goal of the measure- 
ment part of this program is to provide effective measures 
for every phase of the software life cycle. Code measures 
have already been extensively analyzed (Reference 4 ) ,  and a 
study of specification measures is currently underway 
(Reference 5 )  . 
This document is organized into five major sections. Sec- 
tion 1 describes the background and objectives of the design 
studies. Section 2 outlines the measurement approach and 
problems encountered. Section 3 presents the measurement 
results. Section 4 discusses some studies of new design 
methods for which design measures are being developed. Sec- 
tion 5 summarizes the SEL design measurement experience. 

1.1 THE SOFTWARE ENGINEERING LABORATORY 

The SEL (Reference 1) is a research project sponsored by the 
National Aeronautics and Space Administration/Goddard Space 
Flight Center (NASA/GSFC) and supported by Computer Sciences 
Corporation (CSC) /System Sciences Division and the Univer- 
sity of Maryland/Computer Sciences Department (Figure 1-1). 
The objectives of the SEL are to measure the process of soft- 
ware development in the GSFC flight dynamics environment, 
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identify technology improvements, and transfer this technol- 
ogy to flight dynamics software practitioners. 

GODDARD 1 -  
SPACE FLIGHT 

OFMYLAND 

SPACE FLIGHT 

OFMYLAND 
COMPUTER 
SCIENCES 

m h 
(u 
0 

Figure 1-1. Software Engineering Laboratory Organization 

The SEL monitors software developed for spacecraft flight 
dynamics applications at GSFC. During the past 10 years, 
the SEL has collected data from more that 50 software devel- 
opment projects. Most flight dynamics projects are devel- 
oped on a group of IBM mainframe computers using FORTRAN and 
assembler programming languages. Specific software applica- 
tions include attitude determination, attitude control, 
maneuver planning, orbit adjustment, and general mission 
analysis. The attitude systems, in particular, form a large 
and homogeneous group of software that has been studied ex- 
tensively. 
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Data are collected both manually and automatically during 
and after development (Reference 6). For example, errors 
detected and hours charged are reported on forms by the de- 
velopment team. Computer-use data are collected automati- 
cally as part of the accounting procedure. In addition, the 
completed software is processed through a source analyzer to 
obtain detailed size and structure measures. All of this 
information is stored in a computer data base accessible to 
SEL participants. 

1.2 STUDY OBJECTIVES 

The software product is first defined in the design phase of 
the software life cycle. The basic objective of these 
studies was to develop design measures that effectively pre- 
dicted eventual software quality. The target quality meas- 
ures were productivity, reliability, and maintainability. 
Figure 1-2 shows the life-cycle phases in which these quali- 
ties are measured in the flight dynamics environment. Unit 
cost (Figure 1-2) is related to productivity. Measures cor- 
responding to these qualities are defined as follows: 

Productivity (for project) 

- Lines of code per staff hour 

Cost (by unit or module) 

- Staff hours per executable statement 

Reliability 

- Errors per line of code (for project) 
- Faults per line of code (for unit/module) 

Maintainability (for project) 

- Modules or units affected per change 
- Staff hours to implement change 

1-3 
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Figure 1-2. Quality Measurement Across the Software Life 
Cycle 

Because these studies were undertaken in the context of a 
specific production environment, it was necessary to work 
with the existing design practices and representation tech- 
niques (Reference 7). These include the development of tree 
charts and pseudocode. The common objective of the studies 
can therefore be stated as follows: given the flight dy- 
namics design representation, practices, and problem, develop 
design measures for predicting software quality. 
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SECTION 2 - MEASUREMENT APPROACH 

The approach to data collection was basically to gather as 
much and as varied design information as possible and then 
to reduce it to its essential elements. This section de- 
scribes this approach, discusses the problems encountered, 
and summarizes the data collected for analysis. 

2.1 DATA COLLECTION 

To support the wide range of studies undertaken, it was nec- 
essary to collect detailed structure, cost, and error data 
at both the project and module levels. A project is a set 
of functional subsystems implemented as one or more programs 
that support a common mission. A module is the smallest 
unit of independently compilable code. In FORTRAN, a module 
corresponds to a subroutine. 

Cost and error data were collected via the standard SEL 

forms (Reference 6). Design data were extracted from origi- 
nal design materials and from the implemented code. This 
necessitated the establishment of a design materials library 
and the development of procedures for analyzing software 
source code (Reference 8 )  . 
The design materials library includes formal documents, note- 
books, and review materials. Source analysis is performed 
by a specially modified version of the FORTRAN Static Source 
Code Analyzer Program (Reference 9) . 
The design data extracted from the code by the analyzer pro- 
gram include calling trees and counts of statements, vari- 
ables, decisions, etc. Table 2-1 lists the targeted 
module-level design measures, most of which are provided by 
the source analyzer program. Other design-related data pro- 
vided by SEL data collection mechanisms (Reference 6) were 
also studied. 

2-1 
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Table 2-1. Design Analyzer Output 

ITEM 

1 
2 
3 
4 
5 

6 

7 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19 

20 

21 
22 
23 
24 
25 
26 
27 

NAME 

PROJ CODE 
COMP NAME 
COMP WOE 
PAN LEVEL 
MOO FUNCTION 

SUBSYST FUNC 

ORIGIN 

NWECSTMT 
NLINESCMTS 
NCMTLINES 
TOTCHANGES 
TOTERRORS 
DSNHRS 
CODEHRS 
TESTHOURS 
CALLINGCOMPS 
CALLEDCOMPS 
CALLEDNSCOMPS 

DEMHNSYS 

AVGLEVEL 

NARGSPARAMS 
NARGSCALLS 
TOTVARSKNOWN 
NVARSEXECSTMT 
NCOMMONVARS 
NUNREFCOMVARS 
CLUSTER 

LOC 

01-02 
03-10 
11-13 
14-15 
1617 

16-19 

20 

- 

21-24 
2528 
29-32 
33-34 
35-36 
37-44 
45-52 
53-60 
61-62 
63-64 
65-66 

67-68 

69-72 

73-75 
76-78 
79-81 
82-84 
85-87 
88-90 
91-92 

FORM 

12 
A8 
A3 
12 
12 

12 

A1 

- 

14 
14 
14 
12 
12 
Fa. 1 
F8.1 
Fa. 1 
12 
12 
12 

12 

F4.1 

13 
13 
13 
13 
13 
13 
12 - 

DURCE~ 

CIF 
CIF 
CIF 
CIF 
CIF 

CIF 

CIF 

CIF 
CIF 
CIF 
CRF 
CRF 
CSR 
CSR 
CSR 
DSF 
DCF 
DSF 

DSF 

DSF 

DCF 
DCF 
DCF 
DCF 
DCF 
DCF 

DESCRIPTION 

PROJECT CODE FROM ENCODE.HDR 
NAME OF COMPONENT 
COMPONENT CODE (NUMERIC HEX) 
PANVALET LEVEL NUMBER 
MODULE FUNCTION 

SUBSYSTEM FUNCTION 

ORlGiN OF COMPONENT 

1. 

1. 

1: NEW 
2: EXTENSIVELY MODIFIED 
3: SLIGHTLY MODIFIED 
4: OLD (UNCHANGED) 

EXECUTABLE STATEMENTS (COUNT) 
SOURCE LINES, INC. COMMENTS 
NUMBER OF COMMENT LINES 
CRFs FOR M I S  COMPONENT 
CRFs-ERROR-FOR THIS COMPONENT 
TOTAL HOURS, DESIGN PHASE 
TOTAL HOURS, CODE PHASE 
TOTAL HOURS, TEST PHASE 
COMPONENTS CALLING THIS ONE (FANIN) 
COMPONENTS CALLED BY THIS (FANOUT) 
NONSYSTEM COMPS CALLED (FANOUT 

EXCLUDING SYSTEM ROUTINES) 
DEPM OF NONSYSTEM CALLS 0 

AVERAGE LEVEL OF THIS COMPONENT 

ARGUMENTS IN PARAMETER LIST 
ARGUMENTS USED IN CALL STATEMENTS 
TOTAL VARIABLES KNOWN TO COMPONENT 
VARIABLES USED IN EXECUTABLE STATEMENTS 
TOTAL VARIABLES IN COMMON 
UNREFERENCED VARIABLES IN COMMON 
CLUSTER NUMBER (ANALYTIC) 

TERMINAL NODE-TREE D E L L )  

(ROOT NODE = 1) 

NOTE: THE DDF IS A SEQUENTIAL FILE OF LENGTH 92; NO KEYS ARE DEFINED. 

a CIF - COMPONENT INFORMATION FORM 
CRF - CHANGEREPORTFORM 
CSR - COMPONENTSUMMARY REPORT 
DSF - DESIGN STRUCTURE flLE 
DCF - DESIGN COMPONENT FILE 
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Because a complete set of design materials could not be re- 
covered for a11 of the projects studied, most of the analysis 
reported in this document relies on design information ex- 
tracted from the software source. Most design decision re- 
sults are directly reflected in the code, although some 
design information, especially process data, cannot be cap- 
tured in this manner. These experiences suggest that design- 
unique data can be captured only at design time. 

Table 2-2 lists a characteristic set of project-level design 
parameters for future data collection efforts (Reference 10). 
The module-level measures proved to be too voluminous for 
easy historical reference. Individual module records must 
be summarized to project records. 

2.2 DATA SUMMARY 

As indicated previously, the approach to data collection was 
to gather as much design information as possible and then 
reduce it to a more manageable subset based on analysis re- 
sults. The amount and nature of the data obtained varied 
from project to project, with project summary information 
obtained for 29 projects. Detailed design data were ex- 
tracted from only the eight projects shown in Table 2-3; 

only four projects were adequately covered by component sum- 
mary reports, which report module function. Consequently, 
the full range of projects could not be employed for all 
studies. 

Preliminary investigations of the data indicated that values 
for some design and quality measures did not conform to the 
normal distribution model upon which common regression and 
analysis-of-variance techniques are based. In particular, 
values of cost (Figure 2-1) and fault rate (Figure 2-2) were 
skewed to the left (toward zero). Many module-level studies 
therefore employed nonparametric and classification tech- 
niques instead of least squares procedures. The analysis 
technique used for each study is identified in Section 3 .  

2-3 
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Table 2-2. Project-Level Design Parameters 

'ARAMETER 
NAME 

PROJECT 
PHASE 

ENTITY 

DATA1 N 

DATAOUT 

DATALOC 

UNITS 

PROGS 

LEVELS 

NODES 

CALUPP 

CAUSYS 

COMUTL 

COMGLO 

EXTFILE 

PDSTMT 

PDLDEC 
PROLOG 

REUSED 

SCPX 
LCPX 

DESCRl PTlON 

TWODIGIT PAOJECT CODE FROM THE ENCODING DICTIONARY 
UFECYCLE PHASE IN WHICH THESE PARAMETERS WERE 

MEASURED (DETAILED DESIGN, IMPLEMENTATION, ETC.) 

NUMBER OF ENTITIES (PHYSICAL OBJECTS) AFFECTING OR 
AFFECTED BY THE SOFMlARE SYSTEM 

NUMBER OF DESCRETE DATA ITEMS (OR VARIABLES) OUTPUT 
FROM THE SYSTEM (EACH ITEM MAY OCCUR REPEATEDLY) 

NUMBER OF DISCRETE DATA ITEMS (OR VARIABLES) OUTPUT 
FROM THE SYSTEM (EACH ITEM MAY OCCUR REPEATEDLY) 

NUMBER OF DISCRETE DATA ITEMS (OR VARIABLES) LOCAL 
OR INTERNAL TO THE SYSTEM (EACH ITEM MAY OCCUR 
REPEATEDLY) 

NUMBER OF DISCRETE COMPllABLE UNITS, MODULES, PRO 
CEDURES, OR PF#X;ESSES PRESENT IN THE SYSTEM 
(I.E., FUNCTIONAL UNITS) 

NUMBER OF SEPARATELY EXECUTABLE PROGRAMS OR 
TASKS PRESENT IN THE SYSTEM (INCLUDES ONE OR MORE 
UNITS) 

NUMBER OF DISTINCT LEVELS PRESENT IN THE DESIGN 
INVOCATION HIERARCHY (I.E., HEIGHT OF DESIGN) 

MAXIMUM NUMBER OF NODES PRESENT ON ANY LEVEL OF THE 
DESIGN INVOCATION HIERARCHY (LE., WIDTH OF DESIGN) 

TOTAL NUMBER OF CALLS TO APPLICATION MODULES (LE., 
CALLS TO UNITS DEVELOPED SPECIFICALLY FOR THIS 
PROGRAM) 

TOTAL NUMBER OF CALLS TO SYSTEM MODULES (LE., CALLS 
TO PREEXISTING UNITS SUCH AS THE GRAPHIC EXECUTIVE 
SUPPORT SYSTEM (GESS) AND SYSTEM UTILITIES) 

TOTAL NUMBER OF COMPLEX (NOT TERMINAL NODE) UTILITIES 

TOTAL NUMBER OF COMMONS AND OTHER GLOBAL AREAS 

NUMBER OF EXTERNAL FILES ACCESSED BY THE SYSTEM 

(I.E.. FAN-IN > 1 AND FAN-OUT > 0) 

PRESENT IN THE SYSTEM 

(LOGICAL FILES, NOT ACCESSING UNITS) 

TOTAL NUMBER OF PROGRAM DESIGN LANGUAGE (PDL) 
STATEMENTS (EXCLUDING PROLOG DESCRIPTION) FROM 
ALL UNITS 

TOTAL NUMBER OF PDL-DEFINED DECISIONS FROM ALL UNITS 
TOTAL NUMBER OF LINES OF PROLOG (UNIT DESCRIPTION) 

FROM ALL UNITS (EXCLUDING PDL) 
TOTAL NUMBER OF REUSED PROCESSES, MODULES, AND 

UNITS (WHETHER OR NOT SUBSEQUENTLY MODIFIED) 

STRUCTURAL (INTERMODULE) DESIGN COMPLEXITY 
LOCAL (INTRAMODULE) DESIGN COMPLEXITY 

SEE SECTION 3.6 FOR A DISCUSSION OF THESE MEASURES. 
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Tab le  2 - 3 .  Data Summary f o r  D e t a i l e d  Des ign  Data 

TOTAL 
MODULES 

DATA COLLECTED 
PERCENT SIZE 
REUSED~ (KDLOC~) DESIGN 

DATA 

A 

B 
C 

D 

E 
F 

G 

H 

X I 

158 11 50 
203 34 49 

338 32 106 

259 84 37 

327 24 83 
393 47 79 

199 49 5: 

245 43 56 I? As cu 0 

2-5  

0273 



3 
3 a 

B 
P 

36- 

3 =-  
3 28- 

B 20- 

a p 24- 

c 

4 

MODE = 0.0 
MEDIAN = 0.02 
MEAN = 0.05 
MAXIMUM = 0.92 

MODE = 0.10 
MEDIAN = 0.23 
MEAN = 0.37 
MAXIMUM = 5.6 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
HOURS PER EXECUTABLE STATEMENT 

B 201 

5.6 

F i g u r e  2-1. D i s t r i b u t i o n  of Development  Cost 

MODE = 0.0 
MEDIAN = 0.02 
MEAN = 0.05 
MAXIMUM = 0.92 

t I 

0 0.02 0.04 0.08 0.08 0.10 0.12 0.14 0.92 
FAULTS PER EXECUTABLE STATEMENT 

PQCAR4IOPb) 

F i g u r e  2-2. D i s t r i b u t i o n  of F a u l t  Rate 
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SECTION 3 - MEASUREMENT RESULTS 

The design measure studies were conducted at both the project 
and module levels, using a wide range of techniques. The 
general areas of investigation were as follows: 

0 Defining design quality characteristics 

0 Identifying software types and patterns 

0 Quantifying software reuse 

0 Evaluating module design heuristics 

- S i ze/ leng t h 
- Strength/cohesion 
- Control coupling 
- Data coupling 

0 Assessing system design characteristics 

This section describes the relevant results in each of these 
areas. 

3.1 DESIGN QUALITY CHARACTERISTICS 

One area of investigation focused on profiling the design 
process itself in terms of productivity, reliability, and 
maintainability as well as defining its effect on overall 
project quality. One study of three projects showed that 
design-related errors accounted for 74 to 82  percent of all 
nonclerical (nontranscription) errors reported (Refer- 
ence 11). This percentage includes errors resulting from 
producing the design as well as those from misunderstanding 
the design. Figure 3-1 shows the distribution of errors for 
the median project from this sample. Only 6 percent were 
strictly proqramminq errors (related to language or environ- 
ment). Clearly, design quality is a principal factor in 
software reliability. 

3-1 
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Figure 3-1. Nature of Software Errors 

c 
8 
F) 

Another study attempted to use design characteristics to 
predict development, modification, and correction effort 
(Reference 12). Design cost and the number of variables 
(parameters) in the argument list ( ~ 3 )  (Reference 13) were 
measured for new modules from six projects. The modules 
were ranked into quartiles for all five measures. Figure 3-2 
shows the percent of modules in the upper (high) quartile of 
effort for each quartile of design cost (Figure 3-2a) and ‘12 

(Figure 3-2b). 

This information could be used to forecast the quality of 
modules in a system. 
metric and the amount of effort spent in design (cost) are 
known. The modules in the upper quartile of design effort 
should be identified by a project manager for planning pur- 
poses, because 56 percent of these modules fell into the 

At the end of the design phase, the ‘13 
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upper quartile of total development effort. Only 25 percent 
would be expected to fall into this class if assignments to 
classes were random. That is, in this environment, the moa- 
ules in the upper quartile of design effort were more than 
twice (i.e., 0.56 i 0.25) as likely as by chance to be the 
most expensive to develop overall. 

Modules in the upper quartile of the '13 metric were almost 
twice as likely as by chance to require the most effort to 
develop, modify, and correct. It was also observed that it 
is easiest to identify modules that will have high develop- 
ment effort and most difficult to identify modules that will 
require little fault-correction effort. In addition, the 
metrics of design effort and rl* were seen to be reasonably 2 
similar in forecasting ability, except that '15 seems superior 
in identifying modules that will require little modification 
and correction effort. 

An assumption must be made in order to use metric data from 
past projects to predict the quality of modules from a cur- 
rent project. The assumption is that the relationship be- 
tween a module's current metric quartile and its eventual 
quality (i.e., development, modification, and correction 
effort) is the same as the relationship between the final 
metric quartiles of past projects' modules and their quality. 
This assumption is reasonable when using data from recent 
projects that are similar to the current project, and when 
predicting from metrics whose final quartiles are reasonably 
certain early in development. For example, the number of 
calling sequence arguments ( v * )  in a module tends to remain 

2 
relatively constant once specified in the design phase; con- 
sequently, the metric's value does not tend to change quar- 
tiles. It should be noted that the examples and metric data 
presented are from one particular environment; project data 
from other environments may differ. 

3 - 4  
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3.2 SOFTWARE CLASSIFICATION 

Another design approach looks for recurring patterns or types 
of software. Functionally similar systems and modules are 
expected to exhibit similar structure and quality character- 
istics. This relationship can be investigated by explicitly 
assigning types or seeking implicit types in the data. 

3.2.1 PROJECT-LEVEL STUDIES 

One set of studies (Reference 14) was based on a group of 
29 projects that were explicitly classified based on a num- 
ber of criteria. Table 3-1 shows the breakdown into four 
functional classes: scientific, data processing, support, 
and system software. Median values of 11 measures are re- 
ported for each class, with no statistically significant 
differences reported. However, the study also showed that 
software employing GESS (Reference 15) reused more code, 
contained larger modules, required more coding effort, and 
consumed more computer time. These results help managers 
plan future development projects more effectively. 

A cluster analysis was performed using developed lines, 
average module size, computer use, percent of reused code, 
percent of design effort, and percent of test effort. This 
analysis divided the 29 projects into 2 well-defined clus- 
ters and a set of unique individual projects, as shown in 
Figure 3-3. Six of the original 29 projects dropped out of 
the cluster analysis because of missing data for at least 1 
of the clustering variables. 

Cluster 1 consists of attitude ground support system (AGSS)  

projects using GESS. Cluster 2 consists of data base, data 
preprocessor, data simulator, and flight software. The 
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T a b l e  3-1. C h a r a c t e r i z a t i o n  of C l a s s e s  f o r  A p p l i c a t i o n  
Types 

MEASURE 

DEVELOPED LINES 

PERCENT REUSED CODE 
PERCENTDESIGNEFFORT 
PERCENT CODE EFFORT 
PERCENTTEST EFFORT 

PRODUCTIVITY 
STABILITY e 
MAINTAINABILITY f 

SAMPLE SIZE 

AVERAGE MODULE SIZEb 

COMPUTER USE: 

APPLICATION TYPE a 

DATA SUPPORT SYSTEM SCIENTIFIC PROCESSING 

49.272 26.199 15,012 30.481 
185 81 140 91 
21.8 0.4 12.0 5.8 
30.0 39.5 29.5 29.0 
29.0 27.0 23.0 23.0 
35.0 26.0 36.5 45.0 
0.076 0.110 0.030 - 
3.55 9.57 2.67 1.96 
0.036 0.024 0.058 0.080 
47.0 59.5 31 .O 31 .O 
20 2 5 2 

remain ing  f i v e  p r o j e c t s  demonstrated themselves  t o  be unique 
i n  some way, a s  f o l l o w s :  

0 V - - S m a l l  p r o j e c t  w i t h  l a r g e  ave rage  module s i z e  

0 D--Very h igh  p e r c e n t  of reused code 

0 W--High p e r c e n t  of  reused code  and u n u s u a l  d i s t r i -  
b u t i o n  of e f f o r t  d u e  t o  research o r i e n t a t i o n  

0 K--Very l a r g e  A G S S  p r o j e c t  

0 L--Very small  A G S S  u t i l i t y  

T h i s  c l a s s i f i c a t i o n  i s  s i m i l a r  t o  t h a t  de te rmined  by t h e  
GESS use/non-use c r i t e r i a  (Reference 1 4 ) .  C l u s t e r  1 i n c l u d e s  
o n l y  GESS p r o j e c t s ;  however, some GESS p r o j e c t s  a l s o  occur  
i n  C l u s t e r  2 and among t h e  u n i q u e  p r o j e c t s .  

3 . 2  . 2 MODULE-LEVEL STUDIES 

Another s e t  of s t u d i e s  (Reference 1 6 )  was based on i n d i v i d -  
u a l  modules t aken  from e i g h t  AGSSs. Because  of t h e  common 
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Figure 3-3. C l u s t e r  Analysis Tree Diagram 
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application, all projects incorporated the same four major 
functions: executive, telemetry processing, data handling, 
and attitude computation. Table 3-2 shows the percent of 
fault-free modules and the median cost for each class. The 
attitude computation class stands out as a unique group of 
software, exhibiting the highest percentage of fault-free 
modules but also the highest cost (in hours per executable 
statement). On the other hand, the "other" class shares 
that fault-free rate while demonstrating the second lowest 
cost. These data thus suggest that no direct relationship 
exists between cost and error rate. 

The functions of individual modules (within subsystems) 
could be determined for some modules in four projects. The 
functional classes defined were input/output, algorithmic, 
and control. Table 3-3 shows that the three classes did not 
differ noticeably with respect to the fault-free rate. How- 
ever, marked differences appear with respect to cost. Con-. 
trol modules required the most effort to develop: algorithmic 
modules required the least. These results are consistent 
with the intuition that logical decisions are harder to de- 
velop than assignment statements. 

Another approach (Reference 16) taken to these data involved 
defining quality classes and then attempting to identify 
structural characteristics associated with the quality 
classes. Partitioning the modules on the basis of effort 
per executable statement (productivity) and faults per exe- 
cutable statement (reliability) produced two sets of three 
quality classes. Table 3-4 shows the median values for 
measures for each of these classes. Input/output (I/O) vari- 
ables per executable statement and percent of assignment 
statements demonstrated the greatest variation corresponding 
to productivity. It was shown in Section 3 . 1  that the sub- 
set of 1/0 variables, n*, could be used to predict module 
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T a b l e  3-2.  Q u a l i t y  by Subsystem Funct ion  

FAULT- MEDIAN HOURS PER 
NUMBER FREE ("/") EXECUTABLE STATEMENT TYPE 

INPUTK)UTPUT 19 58 0.20 

ALGORITHMIC 99 58 0.16 

CONTROL 96 57 0.24 a 

TYPE 

C s 
R 
cn 
cu 
0 

EXECUTIVE 

TELEMETRY PROCESSING 

DATA HANDLING 

AlTlTUDE COMPUTATlON 

a HIGHEST VALUE IN COLUMN. 

QUALITY CLASS 

NUMBER 

I/O 
VARIABLES~ 

63 

424 

338 

472 

200 

RELIABILITY 

FAULT- 

MEDIUM 
HIGH 

LOW 

FREE ("10) - 
62 

58 
59 

na 
na 

MEDIAN HOURS PER 
EXECUTABLE STATEMENT 

0.27 

0.25 

0.18 

0.30a 

0.22 R cu 
0 

Table  3-3.  Q u a l i t y  by Module Funct ion  

Table  3-4 .  S t r u c t u r a l  C h a r a c t e r i s t i c s  of Q u a l i t y  Classes 

I PRODUCTIVITY I LOW 

I MEDIUM 
 HIGH^ 

a PER EXECUTABLE STATEMENT. 
ZERO FAULTS REPORTED. 

0.58 
0.42 
0.32 

0.59 
0.33 
0.39 

0.32 
0.31 
0.27 

0.32 
0.30 
0.29 

~~ 

ASSIGNMENT 
STATEMENTS~ 

0.33 
0.45 
0.50 

0.37 
0.46 
0.43 

STATEMENTS a 

1-1 

0.17 
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cost. Only the percent of call statements appeared to 
fluctuate substantially with reliability. 

3.3 SOFTWARE REUSE 

Although not always recognized as such, an important design 
decision involves the reuse of existing software. Some good 
ideas have been developed on how to write reusable software; 
however, opportunities to reuse software must be recognized 
during the design activity. The goals of this analysis 
(Reference 17) were to identify the types of software that 
are reused in the flight dynamics environment and. to quan- 
tify the benefits of software reuse. 

Table 3-5 lists some of the characteristics of software re- 
use. Executable statements measure module size. Mean deci- 
sions measure module complexity. This table indicates that 
the modules that are reused without modification (old) tend 
to be small and simple (exhibiting a relatively low decision 
rate). A more detailed cross-classification (not shown) 
revealed that 55 percent of all o l d  modules are high-strength 
algorithmic modules, the type likely to be found in mathe- 
matical software libraries. Table 3-5 shows that extensively 
modified modules tended to be the largest in terms of the 
number of executable statements. 

Tables 3-6 and 3-7 clearly demonstrate the quality benefits 
of software reuse. Fully 98 percent of old modules proved 
to be fault free, and 82 percent of them fell into the lowest 
cost (per executable statement) category. Significant non- 
parametric ( y )  correlations are associated with both of 
these relationships. (Percentages do not add to exactly 100 
due to rounding.) These results are consistent with previous 
S E L  studies of reused code (Reference 4 ) ,  which indicated 
that reusing a line of code costs only 20 percent of the 
cost of developing it new. Because these four classes of 
software differ substantially with respect to structure and 
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Table 3-5. Characteristics of Reused Software 

NUMBER 

MODULES 

EXECUTABLE 
SOFIWARE TYPE OF STATEMENTS 

NEW 532 55 

EXTENSIVELY MODIFIED 132 83 

SLIGHTLY MODIFIED 163 51 

OLD (UNCHANGED) 60 28 

MEAN DECISIONS 
PER EXECUTABLE 

STATEMENT a 

0.30 

0.29 

0.25 

0.20 

: 
2 
v) 
m 
b cu 
0 

Table 3-6. Software Reuse and Development Cost 

DEVELOPMENT COST 
(PERCENT) 

S O W A R E  TYPE 
LOW MEDIUM HIGH 

NEW 42 28 30 

EXTENSIVELY MODIFIED 52 27 22 

SLIGHTLY MODIFIED 63 21 17 

OLD (UNCHANGED) 82 8 10 

2 
g 
v) 

0 
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quality measures, the subsequent module-level analyses are 
based on new modules only. 

Table 3-7. Software Reuse and Fault Rate 

FAULT RATE 
(PERCENT) SOFTWARE TYPE 

LOW I MEDIUM I HIGH 

EXTENSIVELY MODIFIED 

SLIGHTLY MODIFIED 

OLD (UNCHANGED) 
v) 

R cu 
0 

NOTE: GAMMA C, ) 4 . 4 3 ;  PROBABILITY THAT Y = 0 IS LESS 
THAN 0.001. 

3.4 MODULE SIZE 

Design modularization criteria based on limiting module size 
in terms of executable statements or lines of code have been 
proposed and used (Reference 18). For this analysis, 
453 modules were classified into 3 approximately equal 
ordered groups on the basis of the number of executable 
statements in each module. Table 3-8 shows the results of 
this classification. The largest module in the sample con- 
tained 267 executable statements. 

The dividing line of 31 executable statements (Table 3-8) is 
significant because, in the environment studied, it corre- 
sponds to about 60 source lines of code. Many programming 
standards limit module size to one page (or 50 to 60 source 
lines of code). The informal guideline used in this envi- 
ronment is that no module should exceed 2 pages (about 
64 executable statements). Military standards on module 
size range from 50 to 200 executable statements (Refer- 
ence 18). One purpose of the study was to test the validity 
of such standards, in general, and, in particular, to 
determine if the local guideline should be strengthened. 
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Table 3-8. Module Size Distribution 

MODULE 
SIZE 

MEAN 
NUMBER OF EXECUTABLE DECISIONS PER 

STATEMENTS EXECUTABLE 
STATEMENT MODULES 

SMALL 154 1 TO31 0.31 I MEDIUM I 148 1 32T064 1 0.31 
LARGE 151 65 OR MORE 0.32 

A cross-tabulation of module size with development cost 
showed a correlation ( y )  of -0.31. The probability of 
this correlation being due to random factors is less than 
0.001. Although the magnitude of this correlation seems 
small, Figure 3-4 provides a better illustration of its im- 
portance. As the figure indicates, fully 4 6  percent of 
large modules fell into the lowest cost class, whereas just 
22 percent of small modules were rated as low cost. 

No significant relationship was found between module size 
and fault rate. Two recent studies (References 19 and 20) 
concluded that smaller modules were more fault prone. These 
studies, however, adopted parametric approaches to the sta- 
tistical analysis. Sixty percent of the small modules in 
the sample contained no faults (Table 3-9). Nevertheless, 
this size class exhibited the highest average fault rate 
because a small module with even a single fault will show a 
very high fault rate (Figure 3-5). That may be the 
phenomenon detected by Basili and Perricone (Reference 19) 
and Shen et al. (Reference 20). 

The effects of programmer performance and the possibility of 
an interaction between module size and module strength were 
subsequently considered in a more detailed analysis of these 
data (Reference 17) (Section 3.5). That consideration did 
not change the conclusion that larger modules cost less to 
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HIGH COST 48% 

LARGE MODULES 
(265 EX STMT) 

MEDIUM MODULES 
(32 TO 64 EX STMT) 

SMALL MODULES 
(1 TO 31 EX STMT) 

F i g u r e  3-4. Development Cost f o r  Classes  of Module S i z e  

T a b l e  3-9. Two Fault R a t e  S t a t i s t i c s  

I I I FAULT RATE i 
MEDIAN I SIZE I MODULES I MEAN I 

MEDIUM 0.051 0.024 

LARGE 0.038 0.021 
0 
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1.00 

0.875 

0.750 

0.625 

3 a 
2 

0.375 

0.250 

0.125 

1 

1 

1 

1 
11 

1 

2 1  
I 1  

1 1 

2 a 
1 1 11 

It 1 21 1 ' 2 111 8 1  1 
6 1 1 2 1 1  1 2  I 1 

13 1 11121 1 I 1 1 1 
14 341lllll3 122 1 1 

11  11  
1 1  1 

27 I 4 1 6 1 2  13323232 11121 11 1 t 1 

2 D S * C G D J 9 O ~ A 4 1 1 1 4 2  231144 53 3111  21 122 31 Z 1 1 1  1 1  
96143764511621 2231422 12 1 1 1 1  L O  

~ 

20 60 100 140 180 220 260 

IJOCAR4lOB'I EXECUTABLE STATEMENTS 

F i g u r e  3-5 .  Module S i z e  and  F a u l t  R a t e  

3-15 



develop (per executable statement) than small ones. Module 
size does not appear to affect fault rate. A similar result 
has been reported for another class of software (Refer- 
ence 21). 

Other module size criteria have been proposed based on the 
concepts of software science (Reference 13) and cyclomatic 
complexity (Reference 22). A recent study evaluated the 
ability of these measures to predict development hours and 
errors (Reference 23). Ostensibly, size should be limited 
to reduce cost and errors. Table 3-10 shows that neither 
software science measures nor cyclomatic complexity performed 
as well as the simpler measure, source lines of code. That 
these measures are not strongly related to effort or errors 
suggests that they are not relevant criteria for defining 
appropriate module size. 

Table 3-10. Software Science and Cyclomatic Complexity 

MEASURE 

SOFTWARE SCIENCE EFFOFiT 

SOFTWARE SCIENCE BUGS 

CYCLOMATIC COMPLEXITY 

SOURCE LINES OF CODE 0.52 0.26 

3.5 STRENGTH/COHESION 

Myers (Reference 24) defines seven levels of module strength. 
In descending order, these are functional, informational, 
communicational, procedural, classical, logical, and coin- 
cidental. A high- (functional) strength module performs a 
single well-defined function. Myers contends that high- 
strength modules are superior to low-strength modules. 
Although it was not possible to test this theory exactly, a 
reasonable approximation was made. Some recent attempts to 
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develop objective measures of module strength (References 25 
and 26) seem promising, but are not (in their present forms) 
easily applied: consequently, they were not employed in this 
study (Reference 17) 

Programmers determined the strength of a module via a check- 
list, rating each module they developed as performing one or 
more of the following functions: input/output, logic/ 
control, and/or algorithmic processing. Distinguishing the 
types of functions seemed to be a less ambiguous task than 
identifying the number of functions, because the number of 
functions depends on the level of decomposition recognized 
by the respondent. Those modules described as having only 
one type of function were classified as high strength: those 
having two types, medium strength: and those having three 
types, low strength. Table 3-11 summarizes the results of 
this classification process. 

A cross-tabulation of module strength with fault rate showed 
a correlation ( y )  of -0 .35.  The probability that this 
correlation is due to random factors is less than 0.001. 
Again, a figure (Figure 3-6) provides a better indication of 
the magnitude of this correlation. 
strength modules were fault free, whereas only 18 percent of 
low-strength modules were fault free. 

Fifty percent of high- 

No significant relationship was discovered between module 
strength and development cost. The effects of programmer 
performance and the possibility of an interaction between 
module size and module strength were subsequently considered 
in a more detailed analysis (Reference 27) of these data 
(Table 3-12). 
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T a b l e  3-11 .  Module S t r e n g t h  D i s t r i b u t i o n  

STRENGTH 

MEAN 
DECISIONS PER NUMBER OF MEAN 

EXECUTABLE EXECUTABLE 
STATEMEMS STATEMENT 

FORTRAN 
MODULES 

LOW 

MEDIUM 

HIGH 

HIGH 20% 

HIGH 
STRENGTH 
MODULES 

s 90 77 0.29 

176 60 0.32 

187 48 0.32 

i= 
v) 
0 
IC 
N 

HIGH 35% 
FAULT RATE 

MEDIUM 
STRENGTH 
MODULES 

FAULT RATE 

LOW 
STRENGTH 
MODULES 

F i g u r e  3 - 6 .  F a u l t  Rate f o r  C l a s s e s  of Module S t r e n g t h  

3 - 1 8  
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Table 3-12. 

CRITERIA 

MODULE STRENGTH 

MODULE SIZE 

Contingency Table Results 

EFFECT 
CONTROLLED 

NONE 

SIZE 

PROGRAMMER 

NONE 

STRENGTH 

PROGRAMMER 

CORRELATIONSa 

FAULT RATE 

-0.35b 

-0.32b 

-0.21 

0.20 

0.19 

0.27 

COST RATE 

-0.19 

-0.27b 

0.10 

-0.31 

-0.38b 

-0.41 

GAMMA (y )  STATISTIC. 
PROBABILITY IS LESS THAN 0.001 THAT CORRELATION IS ACTUALLY ZERO. 

Controlling for module size, the correlation between module 
strength and cost increases from -0.19 to - 0 . 2 7  and becomes 
significant. Controlling for module strength, the correla- 
tion between module size and cost increases from -0.31 to 
-0.38. These results imply that, overall, high-strength 
modules (usually small) tend to be low cost but that large 
modules also tend to be low cost (independent of module 
strength). 

Thus far, the potential effects of programmer performance 
were ignored. Lines 3 and 6 of Table 3-12 show the correla- 
tions between the modularization criteria and quality meas- 
ures obtained while controlling for the effect of programmer 
performance. (The interaction of module size and strength 
is, however, no longer controlled.) The large changes from 
the initial correlations demonstrate that programmer per- 
formance interacts with both module size and strength. The 
disappearance of the significance of the relationships be- 
tween module strength and module cost and fault rate indi- 
cates that these relationships exist because high-strength 
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modules are associated with programmers who produce modules 
that cost less and have low module fault rates. 

The effect of programmer performance was also examined in a 
subsequent analysis. Of the 26 programmers in the sample, 
16 developed 9 or more modules. Together these programmers 
accounted for 413 of the total 453 modules. The performance 
of these programmers was reanalyzed using nonparametric cor- 
relation to better define the relationship of programmer 
performance to modularization criteria. 

For each of these programmers, the percent' of zero-fault and 
low-cost modules was computed. The correlation (by program- 
mer) between module strength and percent of zero-fault mod- 
ules was -0.53 (probability less than 0.05 that this 
correlation is due to random factors). Figure 3-7 shows two 
clusters of programmers. Those who produce low-fault-rate 
modules (i.eOr good programmers) tend to produce high- 
strength modules. Good programmers do not, however, appear 
to have any preference for a particular module size. The 
lower significance levels associated with the correlation 
coefficients result from the reduction in sample size pro- 
duced by studying 16 programmers instead of 453 modules. 

Finding that programmer performance accounts for some of the 
strength of these relationships does not affect their valid- 
ity. This result does, however, highlight the difficulty of 
separating the effects of programmer performance from those 
of technology or methodology (Reference 28) . Furthermore, 
it enables us to learn about software development as Soloway 
(Reference 29) prescribes, by observing what good program- 
mers do. 
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Figure 3-7. Module Strength and Faults by Programmer 

3.6 CONTROL COUPLING 

Two modules have a control coupling when one invokes the 
other. One commonly accepted design rule is that no module 
should call too many (i.e., more than seven) other modules. 
Furthermore, a module that calls only one other module might 
just as well include the other module's function within it- 
self. One formulation of this concept is an adaptation of 
the "7 - + 2 rule" (Reference 30), which states that each mod- 
ule should call from five to nine other modules, except in 
the case of terminal nodes. (Calls to system services are 
excluded from these counts of calls.) 

For this analysis (Reference 16), the modules were grouped 
into three ordered classes with respect to the number of 
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descendants: one, two to seven, and more than seven. (Ter- 
minal nodes were not included in this analysis.) The re- 
sults of cross-classification indicate that modules with 
more descendants tend to cost more (per executable state- 
ment) to develop (y = 0.25) and have a higher fault rate 
( y  = 0.33). The probability of these correlations being 
due to chance is less than 0.01. 

Figure 3-8 illustrates the magnitude of the difference among 
classes for fault rate. Only 12 percent of modules with 
more than seven descendants were fault free, whereas 42 per- 
cent of modules with only one descendant were fault free. 
Apparently, the simpler the invocation structure in a mod- 
ule, the better. This measure of structural complexity has 
proven to be clearly related to fault rate (faults per exe- 
cutable statement), whereas more complex measures based on 
counts of decisions and operators have not (Reference 23). 
On the other hand, the total number of faults appears to 
increase with size, decisions, operators, etc. Earlier SEL 
studies dealing with descendant span (e.g., Reference 23) 
were handicapped because they did not distinguish between 
calls to system/library routines and calls to other applica- 
tion modules. The design analysis tool (Reference 9) devel- 
oped for this study remedies that deficiency. 

These results led to the development of a general design 
complexity model based on counts of fanout, 1/0 variables, 
and total modules (Reference 31). The model includes two 
components: local (intramodule) complexity and structural 
(intermodule) complexity. It is defined by the following 
equations: 

C = S t L  (3-1) 
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where C = relative complexity 
S = structural complexity 
L = local complexity 

'i 
I f l + l  

1 L =  n 

where L = local (intramodule) complexity 
= 1/0 variables in module ''in 'i 

fi = fanout of module "i" 
n = number of modules in system 

L f ' i  
s = -  

n 

where S = structural (intermodule) complexity 
fi = fanout of module "i" 
n = of modules in system 

ONE 
CALL 

lW0 TO SEVEN 
CALLS 

FA 
ZERO 

rULTS 1 

(3-2) 

(3-3) 

MORE THAN 
SEVEN CALLS 

Figure 3-8. Fault Rate by Descendent Count 

Reference 31 fully defines these measures and explains their 
derivation. Figures 3-9 and 3-10 show the correlations of 
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relative complexity with error rate and productivity, re- 
spectively, for eight large projects. As indicated in Sec- 
tion 3.1, the bulk of software errors are design related, so 

it is reasonable to find a strong relationship between de- 
sign complexity and error rate, as shown in Figure 3-9. On 
the other hand, many external factors have been shown to 
influence productivity (Reference 27), leading to the weak 
relationship shown in Figure 3-10. An implication of this 
model is that complexity is minimized when fanout is evenly 
distributed across all modules (except terminal nodes, of 
course) . 
3.7 DATA COUPLING 

Two modules have a data coupling when data flows from one to 
the other or is shared in COMMON. The two issues studied by 
the SEL were the effects of different coupling mechanisms 
and the strength of coupling. 

FORTRAN modules can be coupled directly in two ways: through 
calling sequence parameters or through COMMON block vari- 
ables. (A COMMON block is a global data area.) Some authors 
have argued against COMMON coupling (Reference 32), even if 
it results in long and unwieldy calling sequences. A design 
measure was devised to evaluate that argument. 

For this analysis (Reference 161, the modules were grouped 
into three ordered classes with respect to the percentage of 
referenced 1/0 variables in COMMON: zero, 115 percent, and 
>15 percent. (All calling sequence arguments count as ref- 
erenced 1/0 variables.) No relationship was observed between 
fault rate and coupling. Figure 3-11 illustrates this; the 
percentage of zero-fault modules is about the same for both 
parameter and COMMON coupled modules. Earlier recommenda- 
tions that COMMON coupling was best avoided may have been 
based on experience before the general availability of 
"INCLUDE" processors. In an environment where only a single 
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version of a COMMON block definition needs to be maintained, 
COMMON coupling is an acceptable, and sometimes preferable, 
alternative to parameter coupling. Furthermore, another 
study (Reference 33) failed to shown any significant differ- 
ence between global and parameter coupling with respect to 
modifiability. 

PAR A M  ETER 
(NO COMMON) 

MIXED 
(UP TO 15% COMMON) 

COMMON 
(MORE THAN 15%) 

Figure 3-11. Fault Rate by Coupling Type 

The SEL complexity model (Reference 31) described in Sec- 
tion 3.6 implies that the strength of data coupling, in 
terms of the number of variables shared, should be mini- 
mized. Rigorous application of the principle of information 
hiding (Reference 34) should reduce variable repetition and, 
hence, local complexity. 

Figure 3-12 shows two design parts of equal structural com- 
plexity (according to the SEL complexity model): the number 
and distribution of fanouts are identical. Figure 3-12a 
traces a variable through a design following strict top-down 
decomposition rules. The variable appears in the higher 
level modules (A, B, D) as well as the lower level modules 
( C ,  E) that actually use it. Figure 3-12b shows an alterna- 
tive design with a horizontal transfer of data that bypasses 
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(a) STRICT TOP-DOWN STRUCTURED DESIGN 

(b) LOWER COMPLEXITY WITH LATERAL TRANSFER 

Figure 3-12. Reducing Variable Repetition To Minimize 
Complexity 

3-27 

0273 



the higher level modules. The local complexity of the in- 
termediate modules (B, D) in the strict top-down configura- 
tion (Figure 3-12a) exceeds their counterpart in the 
alternative design (Figure 3-12b) because their counts of 
1/0 variables are larger. This complexity model emphasizes 
the number of data couples rather than the nature of the 
coupling mechanism. 

Rotenstreich and Howden (Reference 35) argue that both hori- 
zontal and vertical data flow are essential to good design. 
The appropriate use of horizontal transfers prevents data 
flows from violating levels of abstraction. COMMON blocks 
provide the only mechanism for horizontal data transfers in 
FORTRAN. Figure 3-12 shows that horizontal data flows can 
reduce the magnitude of the local complexity measure in some 
situations. 

Of course, a less complex design might also be produced by 
partitioning the work differently and restructuring this 
design. For example, PROC C could be invoked directly by 
PROC E (if the nature of the problem permitted). However, 
this simpler structure would still be reflected in lower val- 
ues of the local complexity measures defined by this model. 

3.8 SYSTEM STRUCTURE 

Another study (Reference 36) looked at how a system can be 
organized into subsystems and how subsystems can communicate 
with each other and the external environment. Six hypotheses 
were studied, as follows: 

0 Complex Utilities--Complex utilities (modules with 
fanin greater than one and fanout greater than 
zero) adversely affect productivity and error rate. 

0 File Access--Confining 1/0 operations to one module 
per file reduces the potential for error. 
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0 Programs--Allocating distinct functions to separate 
executable images improves productivity and reduces 
the potential for error. 

0 COMMON Usage--Limiting COMMON block usage to one 
block per subsystem and file reduces the potential 
for error. 

0 Hierarchical Level--Design structures with deep 
calling sequence trees are error prone. 

0 Nonexecutable Components--Systems with a high per- 
centage of nonexecutable components are error prone. 

The analyses included data on eight flight dynamics projects 
from which design data had been obtained via the analyzer 
program (Reference 9) plus one other project for which only 
incomplete data were available. Regardless of the initial 
hypothesis statement, all design characteristics were eval- 
uated with respect to their effects on both productivity and 
reliability. 

Table 3-13 shows the correlations of the structure measures 
(derived from the hypotheses) with the quality measures. 
None of the design characteristics studied demonstrated a 
statistically significant relationship to productivity or 
error rate. This does not mean that these characteristics 
are not important; rather, it implies that their effects are 
not general. For example, the use of a complex utility may 
be appropriate in one design context and inappropriate in 
another. 

It was not possible, however, to fully study all the design 
hypotheses of interest with data extracted from the "design 
as implemented in code." Much important design information 
is not expressed in the code. 
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Table 3-13. System S t r u c t u r e  and Q u a l i t y  

SAMPLE 
SIZE 

I - I  CORRELATIONS I 
PRODUCTIVITY 

STRUCTURE MEASURE 

a 
9 

9 

8 

8 

9 

AVERAGE 1 VALUE 

-0.61 

0.19 

-0.01 

0.64 

-0.12 

0.07 

PERCENT COMPLEX UTILITIES 

FILES PER SUBSYSTEM 

SUBSYSTEMS PER PROGRAM 

PERCENT COMMONS CROSSING SUBSYSTEMS 
MEAN MODULE LEVEL 

PERCENT NONEXECUTABLE COMPONENTS 

10 

1.5 

5.1 

48 
6 

18 

ERRORRATE I 

z;i 
i= 
v) 
m 
h 
N 
0 
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SECTION 4 - DESIGN METHOD STUDIES 

In addition to the measurement activities associated with 
the existing flight dynamics design process, the SEL has 
undertaken a number of studies of alternative design methods. 
These studies have produced some additional measurement data, 
as described in this section. 

4.1 OBJECT-ORIENTED DESIGN 

A software object is an abstract model of a problem domain 
entity. Objects are packages of both data and operations on 
that data (References 37 and 3 8 ) .  The Ada package con- 
struct is representative of this general notion of an object. 
Object-oriented design is the technique of using objects as 
the basic unit of modularity in system design. 

The suitability and adaptability of Ada for flight dynamics 
software development is currently being evaluated. The SEL 
is involved in a pilot project to develop a satellite dy- 
namics simulator in Ada using object-oriented methods 
(Reference 39). NASA/GSFC and CSC are cosponsors of the 
experiment, which is supported by personnel from all three 
SEL participating organizations. 

1 

The objective of the overall experiment is to determine the 
effectiveness of Ada for flight dynamics software develop- 
ment at NASA/GSFC. The experiment, begun in January 1985, 
consists of the parallel development, in FORTRAN and Ada, of 
the attitude dynamics simulator for the Gamma Ray Observa- 
tory (GRO) spacecraft. When completed, the system is ex- 
pected to comprise approximately 40,000 source lines of code 
to execute on a DEC VAX-11/780 computer. Additional infor- 
mation about the experiment is presented in Reference 40.  

~ 

lAda is a registered trademark of the U . S .  Government 
(Ada Joint Program Off ice) . 
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This project has resulted in the development of a new design 
notation and formal procedures for integrating object- 
oriented design into the software development life cycle 
(Reference 41). 

The principal design abstractions incorporated in this pro- 
cedure are the state machine abstraction (Reference 42) and 
the representation of the system according to the orthogonal 
views of a seniority hierarchy and a parent-child hierarchy 
(Reference 43). The design is expressed as a set of object 
diagrams. The state machines are conveniently implemented 
as Ada packages cotlsisting of internal state data and a 
group of related procedures that operate on that state data. 

An instance of an object diagram is shown in Figure 4-1. 
The figure indicates that the OBC package is senior to the 
Truth Model package. The arc between the t w o  packages shows 
that OBC uses operations (subprograms) of the Truth Model. 
Arcs do not go from a package to one that is above it. In 
this way, each diagram expresses the relative seniority of 
the packages. The orthogonal parent-child (or inclusion) 
hierarchy provides for a package (like one of those in Fig- 
ure 4-1) to be represented on a separate diagram in terms of 
its constituent elements; for example, subprograms, other 
packages, and state data. 

As shown in the example, these object diagrams integrate 
concepts from several other methodologies (References 3 8 ,  
43, 44, and 45). Their use provides the following: 

0 A design notation that maps into Ada, thus provid- 
ing a composite mapping from a specification to Ada 
software 

0 A design notation flexible enough to represent both 
traditional structured designs and nonhierarchical 
designs 
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- - - - - -  

Figure 4-1. Ada Design: Seniority Hierarchy of Packages 

0 Criteria for partitioning a software system into 
modules and for choosing direction of control 

0 Support for walk-throughs and iterative refinement 
of a design through the use of graphical notation 
for both the specification and the design 

These concepts form an integral part of an object-oriented 
software development life cycle. 
to determine how object-oriented concepts can be used in 
other phases of the life cycle, such as specification and 
testing. When complete, this synthesis should produce a 
general object-oriented development methodology. 

Studies are now under way 

4 . 2  FORTRAN/ADA-ORIENTED DESIGN COMPARISON 

Some early experiences using Ada for scientific applications 
(e.g., Reference 4 6 )  showed that the design of the Ada sys- 
tem "looked like a FORTRAN design." As part of an experiment 
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on the effectiveness of Ada (Reference 40), the experiment 
planners identified the following factors that were believed 
to be prerequisites for obtaining a new design, one that 
would take full advantage of Ada features: 

0 The opportunity to set aside previous designs for 
the system and work directly from system require- 
ments 

0 Training in design methods that exploit Ada's capa- 
bilities 

0 Encouragement to explore these new design methods 

The purpose of this analysis was to address the following 
question: 

When these prerequisites were satisfied, was a different 
design produced? 

In this analysis, a FORTRAN design was compared.with an 
Ada-oriented design for the same system. In this high-level 
look at each design, the overall system structure, the ex- 
ternal and internal data flows, and the control flow are 
discussed. Some simple quantitative measures are extracted 
from each design, 

4.2.1 SYSTEM STRUCTURE 

A top-level system diagram for each design is shown in Fig- 
ures 4-2 and 4-3. To facilitate comparison, the identical 
system input and output objects are placed at the top and 
bottom, respectively, of each figure. The FORTRAN system 
consists of the five subsystems in the middle of Figure 4-2. 
The Ada system is the product of a design method (Sec- 
tion 4.1) that differs from the FORTRAN team method. So,  

although "subsystem" will be used to refer to the major Ada 
units, they are, in fact, Ada packages. Furthermore, the 
Simulation Support Subsystem in Figure 4-3 is really a col- 
lection of three Ada packages for the simulation timer, 
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INPUT: 

OUTPVI: 

Figure 4-3. Ada System Diagram 
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parameters, and ground commands. The Ada system appears in 
Figure 4-3 as five subsystems on ly  to invite comparison with 
FORTRAN regarding the high-level data flow. 

A M  
SYSTEM 

USER INTERFACE 

SIMULATION SUPPORT 

SlMULATlON CONTROL 

The FORTRAN system is composed of three distinct programs: 
Profile, Postprocessor, and Simulator (Truth Model, OBC 
Model, and Simulation Control-1/01 . As separate programs, 
each interacts with the user, as shown by the external data 
flows in Figure 4-2 .  The assignment of processing functions 
to each subsystem is shown in Table 4-1 for both the FORTRAN 
and Ada systems. 

NUMBER 
OF 

SUBPROGRAMS 

47 

13 

3 

Table 4-1. Allocation of Functions Among Subsystems 

NUMBER 
OF 

SUBROUTINES 

13 

86 

58 

46 

59 

262 
TOTAL 

SUBROUTINES 

~ 

FORTRAN 
SYSTEM 

POSTPROCESSOR 

s M u u n m  
CONTROLAND VO 

PROFILE 

TRUM MODEL 

cac MODEL 

Rf" 

-r ANALYZE RESULTS 
INTERACTWITHUSER 
UPDATE PARAMmRS 
SCHUMGFtUJNDCOMMANDS 
MAIYTANSMUUTU)TIME 

I- CALCUATE ArmLlDE - 
INDEPENDENT PRORLE 
(ENVIRONMENTAL TORQUES. 
EPHEMERIDES, ETC.) 

INTEGRATE EOUATDNS OF MOTION { MODEL SENSOAS AND ACTUATORS 

SIMULATE GRO Al-rITUDE DETERMINATION 

MODELCONTROL LAWS OFONBOARD 

MODEL BACKUP CONTROL PROCESSING 

TRUTH MODEL 1 02 

OBC MODEL 

TOTAL 
SUBPROGRAMS 

t: 
E 
v) 

0 ,rc 
N 0 

The Ada system is designed as a single program, with each 
subsystem performing the functions listed in Table 4-1. The 
OBC Model is functionally similar to its FORTRAN counterpart. 
The Ada Truth Model incorporates the processing performed in 
the FORTRAN Profile in addition to the FORTRAN Truth Model. 
(The FORTRAN user has the option of choosing not to use Pro- 
file and having those calculations performed in the Truth 
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Model, t h e r e b y  m i r r o r i n g  t h e  Ada des ign . )  The Ada d e s i g n  
p u l l s  a p a r t  t h e  s i m u l a t i o n  c o n t r o l  f u n c t i o n s  from t h e  User 
Interface;  these p r o c e s s i n g  elements are combined i n  t h e  
FORTRAN des ign .  However, t h e  User I n t e r f a c e  i n  Ada i n c l u d e s  
t h e  r e s u l t s  p r o c e s s i n g  t h a t ,  i n  FORTRAN, is d e l e g a t e d  t o  a 
s e p a r a t e  program, t h e  Pos tp rocesso r .  B o t h  d e s i g n s  have major 
u n i t s  named T r u t h  Model and OBC Model t o  re f lec t  t h e  under- 
l y i n g  c o n t r o l  problem. 

4 . 2 . 2  EXTERNAL DATA FLOW 

Both  d e s i g n s  i n  F i g u r e s  4-2 and 4-3 show communication wi th  
n i n e  e x t e r n a l  objects ( f i l e s  or d e v i c e s ) .  E i g h t  of t h e  n i n e  
are  i d e n t i c a l ,  t h e  d i f f e r e n c e  being t h e  p r o f i l e  d a t a  f i l e  i n  
FORTRAN and t h e  d i s p l a y  format  f i l e  i n  Ada. The  FORTRAN 

d e s i g n  requires t h e  p r o f i l e  d a t a  f i l e  t o  decouple  t h e  P r o f i l e  
and T r u t h  Model p rocess ing .  The u s e  of a d i s p l a y  format  
f i l e  i n  t h e  Ada d e s i g n  i s  motivated by r e u s a b i l i t y  c o n s i d e r -  
a t i o n s .  By keeping t h e  de ta i led  f o r m a t s  of menus and d i s -  

p l a y s  on a n  e x t e r n a l  f i l e ,  t h e  user i n t e r f a c e  is e a s i e r  t o  
reuse on a f u t u r e  s i m u l a t o r .  The number of e x t e r n a l  d a t a  
f lows  is g r e a t e r  i n  t h e  FORTRAN d e s i g n ,  a s  shown i n  
T a b l e  4-2 .  Most of t h e  a d d i t i o n a l  da ta  f lows  a r i se  from t h e  

s e p a r a t i o n  of t h e  FORTRAN d e s i g n  i n t o  three programs, re- 
q u i r i n g  more d a t a  f lows  t o  and from t h e  u s e r  and d i s t i n c t  
d a t a  f lows  t o  t h e  p r o f i l e  data  and r e s u l t s  o u t p u t  f i l e s  t h a t  

decouple  t h e  programs. A l s o ,  a s  shown i n  F i g u r e  4-2 ,  t h e  

s t a r  c a t a l o g  e x t e r n a l  f i l e  i s  r equ i r ed  i n  both  P r o f i l e  and 
t h e  T r u t h  Model. 

The  Ada d e s i g n  ( F i g u r e  4-3) i nvo lves  t h e  minimum number of 
e x t e r n a l  d a t a  f lows.  The d e t a i l s  of a c c e s s i n g  each f i l e  are  
c o n f i n e d  t o  a s i n g l e  subsystem. 

4.2 .3  INTERNAL DATA FLOW 

Tab le  4-2  shows t h a t  t h e  Ada des ign  has n i n e  i n t e r n a l  d a t a  
f lows ,  v e r s u s  three f o r  t h e  FORTRAN d e s i g n .  O f  c o u r s e ,  no 
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more internal data flows are possible in the FORTRAN case 
because Profile and the Postprocessor are separate programs. 
The three remaining subsystems in the FORTRAN design exchange 
data with one another via COMMON blocks. 
of COMMON has been criticized, results from the flight dy- 
namics environment described in Section 3.7 have shown it to 
be effective.) 

(Although the use 

CHARACTERISTIC 

SEPARATE PROGRAMS 

Table 4-2. Basic Quantitative Design Characteristics 

FORTRAN 
DESIGN 

3 

EXTERNAL DATA FLOWS 

INTERNAL DATA FLOWS 

SUBAOUTINEYSUBPROGRAMS 

PACKAGES 

TASKS 

EXTERNAL ENTITIES 

18 

3 

262 

N/A 

5 (IN SIMULATOR 
PROGRAM) 

1 9  

ADA 
DESIGN 

1 

5 

9 

10 

9 

252 

104 

The number of distinct data flows (connections) between sub- 
systems is greater in Ada: however, fewer data items pass 
over these connections than in FORTRAN. Figures 4-2 and 4-3 
are annotated with the count of data items associated with 
each data flow. An example will show how various Ada lan- 
guage features help to reduce the proliferation of data item 
names . 
Both designs provide for the recording of simulation anal- 
ysis results. In FORTRAN (Figure 4-2), these results pass 
from the Truth Model and OBC Model via COMMON to the Simula- 
tion Control-1/0 Subsystem, which writes them to the exter- 
nal results output file. In Ada (Figure 4-3), the internal 
data flows from the Truth Model, OBC Model, and Simulation 
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C o n t r o l  c a r r y  r e s u l t s  d a t a  t o  t h e  User I n t e r f a c e ,  which  
writes them t o  t h e  r e s u l t s  ou tpu t  f i l e .  

I n  t h e  FORTRAN d e s i g n ,  t h e  resul ts  d a t a  r eco rd  compr ises  
4 3  d i s t i n c t  v a r i a b l e  names. I n  Ada, t h e  r e s u l t s  are  passed  
under a s i n g l e  i d e n t i f i e r ,  R e s u l t s  - Data, when a procedure ,  
P u t  - R e s u l t s  - Data,  i n  t h e  User I n t e r f a c e  is cal led by t h e  
T r u t h  Model, OBC Model, o r  S imula t ion  C o n t r o l .  T h i s  reduc- 
t i o n  i n  t h e  number of i d e n t i f i e r s  is p o s s i b l e  because of t h e  
u s e  of Ada ' s  v a r i a n t  r eco rd  f e a t u r e .  I n  t h e  example, 
R e s u l t s  - Data c a n  be e i t h e r  a n  executed ground command, 
pa rame te r  update ,  e r r o r  message, o r  a n a l y s i s  r e s u l t .  I n  
Ada, t h e  user c a n  declare R e s u l t s  Data as t y p e  RESULT, de- 

f i n e d  a s  a r eco rd  t y p e  wi th  a v a r i a n t  p a r t  a s  fo l lows :  
- 

t y p e  RESULT - K I N D  i s  ( E r r o r  Msg, Log - Command, R e s u l t s ,  

t y p e  RESULT (Kind:  RESULT - K I N D : = R e s u l t s )  is 

when E r r o r  Msg 1 Log Command => 

when R e s u i t s  1 Parameters  => 
PARAM - RESULT; 

Par ameFer s : 

r e c o r d  
c a s e  Kind is 

R e s u l t s  c i n e :  STRTNG (1. . -80) ; 
R e s u l t  - R e c :  

end case; 
end r e c o r d ;  

Because of such f e a t u r e s ,  t h e  count of d a t a  items is  con- 
s i s t e n t l y  lower over  t h e  Ada d a t a  flows t h a n  over  t h e  
FORTRAN data  f lows.  

A f u r t h e r  a n a l y s i s  of t h e  i n t e r n a l  data  f low compared t h e  
ave rage  number of data  s o u r c e s  used by modules i n  each  de- 

s i g n ,  A d a t a  s o u r c e  could  be a parameter  l i s t ,  a COMMON 

block i n  FORTRAN, o r  a c o l l e c t i o n  of s t a t e  d a t a  i n  Ada. T h e  

OBC subsystems were examined because t h e y  are  t h e  most 
c l o s e l y  matched by f u n c t i o n a l i t y  (Tab le  4-1)  , The r e s u l t s  
showed t h a t  a module i n  FORTRAN uses an  ave rage  of 4.03 d a t a  
sources compared t o  1 .95  d a t a  sou rces  f o r  a t y p i c a l  Ada sub-  
program. The h ighe r  FORTRAN value r e f l e c t s  t h e  37 COMMON 
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blocks used to store data. 
Attitude Control and Determination Subsystem (ACADS) data 
base of 222 OBC parameters. The typical Ada subprogram in 
the OBC Subsystem uses data from this ACADS data base along 
with a smaller source of state data. 

4.2.4 CONTROL FLOW 

A study of modules in the OBC Subsystems of each design com- 
pared the distribution of fanout (number of modules called 
by a given module). Ada modules showed a higher average 
fanout, 1.68, versus 1.34 for FORTRAN. In a comparison of 
average fanout squared, Ada modules were higher, 12.68, ver- 
sus 6.24 for FORTRAN modules. Higher fanout in the Ada de- 
sign reflects a basic pattern of obtaining data values by 
subprogram invocation. The FORTRAN practice is to obtain 
values from COMMON without a subroutine call. An example 
shows this difference. 

The example focuses on the function of modeling the magne- 
tometer. The modules that perform this function were iden- 
tified and examined in each design. In each case, the same 
output quantities, magnetometer measurements, are produced. 
The Ada design involves invoking five subprograms in addi- 
tion to the calls on the Simulation Support Subsystem to 
obtain magnetometer parameters. Four of the subprograms are 
invoked to obtain current data needed for the magnetometer 
modeling: spacecraft attitude, geomagnetic field, torquer 
dipoles, and magnetic field of the coils. The fifth subpro- 
gram call is to put the results data to the user interface. 

Magnetometer modeling in the FORTRAN design requires no 
calls to supporting subroutines for data. Six COMMON blocks 
are referenced to obtain necessary data (attitude, magnetic 
field, etc.) and to pass output magnetometer measurements. 

The Ada design provides a single 
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4.2.5 CONCLUSIONS 

The comparison of FORTRAN and Ada designs revealed signifi- 
cant differences in both the design processes and products. 
In this experiment, the Ada design was shown to be different 
to a significant degree from the FORTRAN design. This re- 
sult differs from that reported in Reference 46 for another 
monitored Ada development project in a different environment. 

The results have implications for other organizations con- 
templating the use of Ada. This experiment led to a design 
that exploits Ada's features for expressing design abstrac- 
tions. However, this result was facilitated by (1) the use 
of a specification method, the Composite Specification Model 
(Reference 5 ) ,  to counteract the influence of design-laden 
requirements; ( 2 )  the explicit allowance for the Ada team to 
pursue new design methods, not requiring the team to take 
the less costly route of reusing the existing deign; and (3) 
training in alternative design methods. 

4.3 DESIGN METHOD EVALUATION 

Several SEL-supported design studies have been conducted at 
the University of Maryland using students as subjects. Two 
recent experiments are of particular interest because they 
are concerned with the differences among design methods. 
The full results of these experiments are not yet available 
(Reference 47). 

In the first experiment, subjects used different design 
methods to develop software in Ada for either a text for- 
matter or an electronic mail system. The design methods 
included Jackson System Development (JSD) (Reference 48) , 
object-oriented design (OOD) (Reference 38) , structured de- 
sign (SD) (Reference 44), and several ad hoc design ap- 
proaches. The objectives of the experiment were to learn 
whether the prescriptive design methods (JSD, OOD, SD) were 
correctly applied, identify structural differences among the 
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designs, and analyze the resulting programs. As a follow-on, 
the programs were given to graduate students who were di- 
rected to make modifications to the programs. This follow-on 
study investigated a possible relationship between design 
method and ease of modifying the corresponding program. 

The second experiment consisted of ten three-person teams: 
five teams using OOD and five using SD. 
was to explore differences in the resulting programs that 
could be associated with the particular design method em- 
ployed. The programs ranged in size from 2400 to 3000 source 
lines of Ada. 

Again the objective 

The results of these experiments are still being analyzed, 
but are inconclusive thus far. 
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SECTION 5 - SUMMARY 

The p reced ing  s e c t i o n s  described t h e  r e s u l t s  t o  date  of  an  
e x t e n s i v e  program of d e s i g n  measurement and methodology 
e v a l u a t i o n  conducted by t h e  SEL. These i n v e s t i g a t i o n s  have 
o b t a i n e d  s e v e r a l  t a n g i b l e  b e n e f i t s  f o r  f l i g h t  dynamics (and 
o t h e r )  s o f t w a r e  deve lope r s :  

0 D e f i n i t i o n  of a basic set  of 1 9  d e s i g n  measures f o r  
da ta  c o l l e c t i o n  and h i s t o r i c a l  r e f e r e n c e  

- Design-unique d a t a  must be c a p t u r e d  a t  d e s i g n  
t i m e .  

- Module-level d a t a  m u s t  be summarized t o  t h e  
p r o j e c t  l e v e l  fo r  a r c h i v i n g .  

0 E v a l u a t i o n  of common des ign  p r a c t i c e s  and s t r u c t u r a l  
charac te r i s t ics ,  showing 

- GESS u s e  l e a d s  t o  s i g n i f i c a n t  s t r u c t u r a l  d i f -  

ferences among p r o j e c t s  b u t  n o t  t o  p r o d u c t i v i t y  
o r  r e l i a b i l i t y  changes.  

- Sof tware  reuse l e a d s  t o  h i g h e r  p r o d u c t i v i t y  
and r e l i a b i l i t y  of t h e  f u l l  system. 

- Module s i z e  is n o t  an  e f f e c t i v e  c r i t e r i o n  f o r  
s o f t w a r e  des ign .  

- High-s t rength  modules e x h i b i t  lower c o s t s  and 
f a u l t  ra tes .  

- C o n t r o l  c o u p l i n g ,  i n  terms of t h e  number of  
i n v o c a t i o n s  from a module ,  shou ld  be minimized. 

- Parameter o r  COMMON c o u p l i n g  shou ld  be used  a s  
a p p r o p r i a t e .  N e i t h e r  i s  g e n e r a l l y  be t te r  t h a n  
t h e  o t h e r .  
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e Development of a design complexity model that sug- 
gests the following: 

- For a given total fanout, calls should be as 
evenly distributed across modules as is con- 
sistent with the design problem. 

- Repetition of variables should be minimized 
via information hiding and horizontal data 
transfers. 

0 Adaptation of object-oriented design methods for 
flight dynamics use resulting in 

- A procedure for defining objects from a data 
flow diagram 

- A graphical notation for expressing object- 
oriented designs 

- 
0 Assessment of alternative design methods, showing 

- Specific prerequisites must be satisfied to 
produce substantially different designs for 
the same problem. 

- No single design method is generally better 
than the others for all design problems. 

These results will be incorporated into future versions of 
flight dynamics standards (e.g., References 7 and 4 9 ) .  
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